
On synthesizing workloads emulating MPI applications

Javier Navaridas, Jose Miguel-Alonso, Francisco Javier Ridruejo.

Department of Computer Architecture and Technology,

The University of the Basque Country P.O. Box 649, 20080 San Sebastian, SPAIN

Tel. +34 943018019 Fax +34 943015590

{javier.navaridas, j.miguel, franciscojavier.ridruejo}@ehu.es

Abstract

Evaluation of high performance parallel systems is

a delicate issue, due to the difficulty of generating

workloads that represent, with fidelity, those that will

run on actual systems. In this paper we make an over-

view of the most usual methodologies used to generate

workloads for performance evaluation purposes, focus-

ing on the network: random traffic, patterns based on

permutations, traces, execution-driven, etc. In order to

fill the gap between purely synthetic and application-

driven workloads, we present a set of pseudo-synthetic

workloads that mimic applications behavior, emulating

some widely-used implementations of MPI collectives

and some communication patterns commonly used in

scientific applications. This mimicry is done in terms of

spatial distribution of messages as well as in the

causal relationship among them. As an example of the

proposed methodology, we use a subset of these work-

loads to confront tori and fat-trees

1. Introduction

The interconnection network is the most character-

istic element of any parallel computer. Its performance

has a definite impact on the overall execution time of

applications, especially for those that are fine-grained

and communication intensive. Thus, we should not

decide lightly the network that interconnects comput-

ing elements in a high performance computing site.

The evaluation of an interconnection network is a

complex task that requires a complete model of the

network technology we want to assess. Once we have

the model of the system, we ought to measure its per-

formance, and some important questions arise: How

should we evaluate the network? Should we measure

only raw performance? Is it a better idea to fine-tune

 This work has been supported by the Ministry of Education and

Science (Spain), grant TIN2007-68023-C02-02, and by grant IT-242-

07 from the Basque Government. Mr. Javier Navaridas is supported
by a doctoral grant of the UPV/EHU.

the system for the set of applications that will run on

it?

There is not just a valid answer to these questions.

Often, the most important measurement of a system’s

performance consists simply in running Linpack,

whose measured performance is the sorting-key for the

top500 list [7]. Supercomputing sites can climb some

positions in the list, improving their prominence, by

boosting this single figure. In other places the evalua-

tion is centered on the execution speed achievable by

those applications that are currently used, or those that

are expected to be used in the future. Alternatively, for

the networking technology engineer, the most impor-

tant evaluation concern should be the raw performance

of the product, which means that its design will per-

form acceptably well in almost all scenarios.

In this paper we discuss some methodologies used

to evaluate interconnection networks, and propose a set

of synthetic traffic patterns that emulate pieces of sci-

entific applications, both in terms of the spatial distri-

bution of messages and causal relationship between

them; the evolution of message lengths is discussed

too. These workloads can be considered as perform-

ance measurement micro-kernels, because they evalu-

ate the behavior of the system under different kinds of

traffic that often appear within parallel applications.

However, the effort of evaluating with these micro-

kernels will be orders of magnitude smaller than that

required to run a large set of complete applications.

The rest of this paper is arranged as follows. In Sec-

tion 2 an overview of the most common methodologies

used to evaluate parallel computing systems are dis-

cussed, showing the motivations to introduce applica-

tion-inspired workloads. Section 3 introduces and justi-

fies some workloads of this class, and the way they

resemble common patterns used within applications. In

Section 4 we show how these workloads can be used in

an actual performance measurement study, using as an

example the comparison of torus and fat-tree networks.

Finally we close this paper with some conclusions and

future lines of work in Section 5.

2. Related work

Synthetic traffic patterns from independent sources

[6] provide a good first approach to evaluate a network

because they allow us to asses rapidly what the raw

performance of a network is. Often, randomly gener-

ated traffic is used to evaluate systems: uniform, hot

region and hot spot traffic patterns have been used in

many studies [4][12]. Other commonly used patterns

are those that send packets from each source node to a

destination one as indicated by a certain permutation,

usually defined as a function that takes as input the

address of the source. Some examples of these permu-

tations are: matrix transpose, bit complement, butterfly,

perfect shuffle, bit reversal, etc. [11].

It is not common to find actual applications that are

internally implemented using patterns like these, syn-

thetic ones, in which traffic-generating nodes produce

messages without coordinating among them. We can

state that synthetic traffic patterns do not accurately

mimic the behavior of any actual application [15]. For

this reason, trace-driven simulation is often used to

perform a more realistic evaluation of a system [6].

Feeding a simulator with a trace is not an easy task. To

evaluate only the network of a parallel system we

could implement a dummy model of the processing

node, allowing it to inject messages into the network as

fast as it can, ignoring the causality of messages and

the computation intervals. This approach is a stress test

of the network, because of the contention generated by

all nodes injecting at the maximum pace.

It would be more realistic to maintain the causal re-

lationship between all the messages in the trace [13]; in

other words, if the trace states that there is a reception

before a send, the node has to wait for the reception to

be completed before starting with the send. This

mechanism provides more fidelity than the inject-at-

will model. To further improve the accuracy of the

simulation, compute intervals (in which nodes do not

inject load into the network) should be taken into ac-

count, maybe applying a CPU-scaling-factor in order

to simulate a system with faster (or slower) CPUs than

those used to capture the trace.

There are still some problems with the trace-driven

approach that we should not ignore. Firstly, the infor-

mation captured within the trace could be inexact due

to the trace logging mechanism. Secondly, traces may

reflect some of the characteristics of the system in

which they have been obtained. Finally, traces from

actual applications running in a large set of processors

are difficult to obtain, store and manage traces, and

these are precisely the ones of interest in performance

evaluation studies.

A hybrid between the utilization of synthetic traffic

patterns and traces is the estimation of probability dis-

tributions for destinations, inter-generation times and

message lengths, using data extracted from actual

traces to feed some distribution-fitting program. With

the aid of these tools we can generate random traffic

whose distribution resembles that of the traced applica-

tion (when running in a particular system). However,

as stated before, in actual applications causal relation-

ships among messages are common, and this technique

does not capture them. And, again, the inexactitude of

the information within the trace (due to the characteris-

tics of the system in which the trace was captured, and

the intrusion of the logging process) may generate es-

timated distributions, or parameters of those, that are

not valid.

In order to introduce causality in the simulation and

fill the gap between trace-driven simulation and syn-

thetic traffic patterns, a bursty traffic model was evalu-

ated in [15]. This model uses synthetic traffic patterns

and emulates application causality using a coarse-

grained approach. The message generation process

passes through a certain number of “bursts” or steps.

During a burst each node is able to inject into the net-

work only a given number of packets (b); after doing

so, it must stall until the burst finishes, that is, until all

the packets of the burst (generated at all the nodes)

have been injected and received, being the network

completely empty. Simulations with short bursts emu-

late tightly-coupled applications and, therefore, long

bursts emulate loosely-coupled applications. Synchro-

nization among application tasks is included in this

model, but in a very primitive way (roughly a barrier

every b packets); fine-grained dependencies among

messages/tasks are not considered.

The most accurate methodology to evaluate a paral-

lel computer would be running a detailed full-system

simulation that includes interconnection network,

compute nodes, their operative system, and the applica-

tions running on them. This is a very complex and er-

ror-prone task, as discussed in [9]. It is also a high re-

source-consuming methodology that could need a sys-

tem similar in dimension to the one we want to evalu-

ate. These are the main reasons to justify the limited

utilization of execution-driven simulation to evaluate

medium-to-large size distributed memory parallel com-

puters.

Within this paper we will introduce a set of pseudo-

synthetic workloads inspired in application-kernels

aimed to fulfill the gap between purely-synthetic and

application-driven workloads. These novel workloads

emulate the spatial and temporal patterns of parallel

applications. We arrange them into two sets: one that

mimics the implementation of collective operations in

MPI libraries, and another one that mimics the behav-

ior of applications that rely in the use of virtual topolo-

gies, mostly virtual meshes and tori.

3. Proposed workloads

In this section we describe in detail and discuss our

proposal to model application-like workloads. They

will be described graphically as well as algorithmi-

cally. All the proposed workloads require the specifica-

tion of a few parameters: the number of communica-

tion tasks (N), the length of the basic message (S) and,

in the case of the workloads that rely on virtual topolo-

gies, the number of dimensions (D). We assume that

tasks are identified from 0 to N-1. We define a basic

message as the length of the data blocks generated at

the nodes; the length of the messages that actually

traverse the network may vary, if the workload requires

the aggregation of messages; this issue will be dis-

cussed later. When the pattern is arranged as a se-

quence of stages (meaning that all nodes have to wait

for messages before starting with new sends), we will

denote the stage number as t.

The reader should note that, when we talk about dis-

tances in this section, we refer to the difference be-

tween source and destination node identifiers. The ac-

tual, physical distance of those nodes will depend on

the routing and topological characteristics of the under-

lying network.

Send_to(node, length) and Wait_from(node, length)

functions, in the algorithmic definitions of the patterns,

do what their names suggest: send a message to a des-

tination or wait until a message from the desired node

arrives. For both operations, if the other communicat-

ing part (the receiver or the sender) is not defined, the

call will do nothing, just return. In the virtual topolo-

gies subsection (3.2), the Neighbor(node, dimension,

direction) function used in the algorithmic definition of

those patterns will return the neighbor of a given node

for the given dimension and direction; in the case of a

(virtual) mesh topology, the returned value could be

undefined for the nodes located at the borders of the

network. Length(stage, length) returns the message

length taking into account the length evolutions we

will discuss latter.

Regarding graphical description of the patterns,

small black arrows represent messages: the rounded

end represents a message sending, and the arrowhead

represents the waiting for the message at the destina-

tion task, so if there is an arrowhead before a round,

the node has to wait until the first message arrives;

only then the second message can be injected. Green

arrows in section 3.1 represent MPI tasks and are ar-

ranged top-down, i.e. the green arrow at the top of the

figure represents task 0, the one at the bottom repre-

sents task 7 (N-1). The green squares in section 3.2

represents MPI tasks and are arranged from left to right

and then top-down, so the tasks in the topmost row are

task 0, task 1, …

3.1. MPI collective operations

Most of the scientific parallel applications we have

studied use MPI collectives to implement parts of their

functionality: from scattering information to collecting

results, or just to synchronize a group of processes. For

example, the Fourier Transform, used in many scien-

tific applications, could be implemented by means of

MPI_Alltoall() and MPI_Reduce() collectives: the FT

program included in the NAS Parallel Benchmarks

[10] is implemented this way. Thus, we found of inter-

est to assess the performance of the network when real-

izing collective operations, because of the bearing it

will have in the overall performance of complete appli-

cations. In this subsection we propose traffic patterns

that are the foundation used to implement some of the

most common collectives.

3.1.1. Binary tree

The Binary Tree pattern (BT) provides an efficient

implementation of some N-to-1 (all-to-one) collective

operations, used by some MPI implementations that

make no assumption about the underlying network or

the node placement strategy [8]. In this pattern mes-

sage interchanges are performed in O(N) in number of

messages and O(log N) in time. It starts with a message

at odd-numbered nodes, and ends when a “root” node

(in our model, node 0) has received the last message

from all nodes whose identifier is a power of two (in-

cluded 2
0
=1). The spatial and causal pattern is defined

algorithmically and graphically in Fig. 1.

The MPI_Reduce() collective is implemented using

this pattern, with a constant message length (that of the

type of the reduced variable, commonly a float or an

integer). Note that a computation phase is introduced

before each send, in order to perform the reduction

operation; however, as the CPU time used to perform

this operation is usually very small (the time to per-

form a simple operation such as an addition or a com-

parison) we could ignore it. MPI_Gather() also makes

use of this pattern. The length of the message dupli-

cates at each stage (increases exponentially). In con-

trast, in MPI_Gatherv() the message length increases

each stage in an application-defined way.

3.1.2. Inverse binary tree
A variant of the previous pattern, the Inverse Binary

Tree (IBT) is a common implementation of 1-to-N

(one-to-all) collectives [8], with the same complexity

of the BT pattern. IBT starts with a single message in

the “root” node and finishes when all the odd nodes

receive a message. Readers may note that spatial and

causal patterns are just the opposite of those of BT.

IBT is defined algorithmically and graphically in Fig.

2.

MPI_Bcast() uses this pattern in some MPI imple-

mentations that rely on point to point operations to

offer this functionality (often because there is not net-

work-supported broadcast). The message length is

fixed during the whole pattern, and the computation

time is zero because there is no operation to perform

with the received message; the node only has to send it

to the next task, if necessary. MPI_Scatter() operation

also uses IBT and the message length halves at each

stage. In the case of MPI_Scatterv() the message length

in an application-dependent way. Regarding the com-

putation time, it depends on the architecture and the

possibility to use DMA directly from the MPI library.

The reader should note that a usual mechanism to

implement MPI_Barrier() is by concatenating a Binary

Tree and an Inverse Binary Tree with message length

0. This way, when the BT finishes, the “root” knows

that all tasks are synchronized, and starts an IBT to let

the other tasks know that all of them have reached the

barrier, i.e. they are synchronized.

3.1.3. Butterfly

The Butterfly pattern (BU) provides an efficient

implementation of MPI N-to-N (all-to-all) collectives

(MPI_Alltoall(), MPI_Allreduce(), etc.) [16]. It is also

known as “recursive doubling”, or “recursive halving”

in the inverse butterfly case. BU is O(N log N) in num-

ber of messages and O(log N) in time. BU pattern

starts with a message at each node, and ends when all

the messages are received. Algorithmic and graphical

definitions of this pattern are shown in Fig. 3.

Usual implementations of MPI_Alltoall() perform a

Butterfly with constant-length messages. Time be-

tween stages is just the time to go through node’s pro-

tocol stack (two times: up and down). MPI_Allreduce()

is commonly performed using this pattern, with fixed-

length messages, using some CPU time between pat-

tern stages to perform the operation associated to the

reduction. In MPI_Allgather() the message length dou-

bles at each stage of the Butterfly. It happens similarly

with MPI_Allgatherv(), in which the message length

increases at each stage but in an ad-hoc fashion. Fi-

nally MPI_Allscatter() performs a Butterfly in which

message length halves at each stage. Regarding

MPI_Allscatterv(), the message length decreases each

stage in an application-defined way. Again, the CPU

interval depends on the system and the MPI library.

3.2. Virtual topologies

This branch of communication patterns reproduce

the data interchanges performed in applications that

rely on virtual topologies, such as the 2D meshes com-

monly used in matrix calculus. We have modeled these

patterns in such a way that they are available for sev-

eral dimensions (D). We do not discuss about the mes-

sage length in these patterns, because it is constant (a

chunk of the problem matrix). Also, the CPU intervals

among stages within these patterns depend on the ap-

plication and their matrix size. Note that a virtual to-

pology is independent of the actual network topology,

because it is just a way to arrange MPI processes.

[)

[)
()

()

endfor

endif

StlengthnodetoSend

nComputatio

nodeelsif

StlengthnodefromWait

thennodeif

Nintfor

SnodeBinaryTree

Ninnode

t

t

t

t

)),(,2(_

()

02mod

)),(,2(_

02mod

log,0

:),(

:,0

1

2

−

==

+

==

∀

+

[)

[)
()

()

endfor

endif

StlengthnodefromWait

nodeelsif

StlengthnodetoSend

nComputatio

thennodeif

Nintfor

SnodearyTreeInverseBin

Ninnode

tN

tN

tN

tN

)),(,2(_

02mod

)),(,2(_

()

02mod

log,0

:),(

:,0

)1(log

)1(log

)1(log

log

2

2

2

2

2

+−

+−

+−

−

+

==

−

==

∀

[)

[)

 ()

endfor

endif

StlengthnodefromWait

StlengthnodetoSend

else

StlengthnodefromWait

StlengthnodetoSend

thennodeif

nComputatio

Nintfor

SnodeButterfly

Ninnode

t

t

t

t

t

)),(,2(_

)),(,2(_

)),(,2(_

)),(,2(_

02mod
2

()

log,0

:),(

:,0

2

−

−

+

+

==

∀

8-node Binary tree

t=0 t=1 t=2

8-node Inverse Binary tree

t=0 t=1 t=2

8-node Butterfly

t=0 t=1 t=2

Fig. 1. Algorithmic and graphical
definitions of Binary Tree pattern.

Fig. 2. Algorithmic and graphical
definitions of Inverse Binary Tree pattern.

Fig. 3. Algorithmic and graphical
definitions of Butterfly pattern.

3.2.1. Wave-front
The 2D and 3D Wave-front patterns (2W and 3W)

perform a diagonal sweep from the first node to the last

one in MPI virtual square (or cubic) meshes. The simu-

lation of these patterns starts with two (three for 3W)

messages in node 0, and ends with the finalization of

the sweep at the last node of the network. These pat-

terns do not impose a very heavy load on the network –

note that there are only a few nodes injecting at once –

but create some contention near the destination nodes,

because they have to receive data from several

neighbors. Regarding message distance, in 2W it can

take just two values: 1 and N . In the case of 3W, it

can take three values: 1, 3 N and 3 2N . Spatial and

causal patterns of Wave-front are defined algorithmi-

cally and graphically in Fig. 4.

We can observe this pattern in applications imple-

menting the Symmetric Successive Over-Relaxation

(SSOR) [3] algorithm, used to solve sparse, triangular

linear systems. For example, application LU from the

NPB suite [10] performs several consecutive bi-

dimensional sweeps composed by short messages. We

denominate the concatenation of 2W Waterfall (WF).

3.2.2. Distribution
The 2D and 3D mesh patterns (2M, 3M) perform

data distributions in MPI virtual square (or cubic)

meshes from every node to all its neighbors; after that,

each node waits for the reception of all messages from

its neighbors. Simulation starts with all nodes injecting

one message per direction (2-4 for 2M, 3-6 for 3M),

and ends when all the messages have arrived to their

destinations. These patterns impose a very heavy load

on the network, because all nodes inject simultane-

ously several messages at once before stopping to wait

for the receptions. Regarding message distance, in 2M

it can take just two values: 1 and N . In the case of

3M, it can take values: 1, 3 N and 3 2N . Algorithmic

and graphical definitions are shown in Fig. 5.

These patterns can be observed in scientific applica-

tions using finite difference methods [1]. In some of

these applications, the spatial pattern also includes

communication in the positive diagonal: each node

communicates with the nodes located at ±1 in all di-

mensions. Furthermore, there are some patterns similar

to these, but using virtual tori instead of virtual

meshes, thus the nodes located in the boundaries of the

virtual topology communicate between them.

3.2.3. Direction Distribution

The 2D and 3D distribution patterns (2D, 3D) per-

form the same data distributions of 2M and 3M in vir-

tual square (or cubic) meshes. However in these pat-

terns data distributions are arranged in several steps,

one for each direction. Simulation starts with all nodes

injecting one message to their neighbors in the positive

first dimension (X+). After that, each node wait for the

message from its neighbor, and then sends it to the

neighbor in the negative first dimension (X-), and so

on for all the remaining directions. Simulation will end

when all messages in the last direction (and obviously

in all the other directions) have been delivered.

[)

[)

[)

forend

SdnodeNeighbortoSend

Dindfor

forend

SdnodeNeighborfromWait

Dindfor

nComputatio

DSnodeWavefront

Ninnode

)),'',,((_

,0

)),'',,((_

,0

()

:),,(

:,0

+

−

∀

[)

[)
{ }

forend

forend

SwdnodeNeighborfromWait

SwdnodeNeighbortoSend

inwfor

Dindfor

nComputatio

DSnodeonDistributiDirection

Ninnode

)),,,((_

)),,,((_

'',''

,0

()

:),,(_

:,0

−+

∀

[)

[)
{ }

[)
{ }

forend

forend

SwdnodeNeighborfromWait

inwfor

Dindfor

forend

forend

SwdnodeNeighbortoSend

inwfor

Dindfor

nComputatio

DSnodeonDistributi

Ninnode

)),,,((_

'',''

,0

)),,,((_

'',''

,0

()

:),,(

:,0

−+

−+

∀

Wavefront in a 2D Mesh 3x3

t=0 t=1

t=2 t=3

Distribution in a 2D Mesh 4x4

t=0

2D Direction Distribution in a 3x3 Torus

t=1

t=2 t=3

Fig. 4. Algorithmic and graphical
definitions of 2D Wave-Front pattern.

Fig. 5. Algorithmic and graphical
definitions of 2D Distribution pattern.

Fig. 6. Algorithmic and graphical
definitions of 2D Dir. Dist. pattern.

These patterns impose a not-so-heavy load on the

network, because all nodes inject simultaneously one

message at once before stopping to wait for the recep-

tions. Message distance distributions are the same of

2M and 3M patterns. The spatial and causal pattern is

defined algorithmically and graphically in Fig. 6.

These patterns are also common in finite difference

methods [1]. Some applications use some traffic pat-

terns in which the distribution is arranged by dimen-

sions, this is, first messages are interchanged in the

first dimension (X+ and X-) and, when those inter-

changes have finished, the interchanges in the next

dimension (Y+ and Y-) can start, and so on. Note that

the same possible variants of the distribution pattern

(diagonal and tori) could be applied to these patterns.

Just as a curiosity, the reader should note that for-

merly explained butterfly pattern could be seen as a

dimension distribution in a (virtual) hypercube.

4. Evaluating network topologies using ap-

plication-like workloads

As an example of the proposed methodology and

also to show the temporal evolution of the load im-

posed in the networks by these workloads, we will per-

form a comparison of cube-like and tree-like topolo-

gies. In order to have a comparison yardstick, we will

also study a perfect crossbar that would represent a

best-case in network communications. Experiments

will be carried out using simulation [14], measuring

time in terms of (simulated) cycles: a cycle is the time

required by a phit (a physical transfer unit, typically a

few bytes) to traverse one switch.

4.1. Networks to compare

We will evaluate three small networks, all of them

with a theoretical maximum throughput of 1

phit/cycle/node (limited by the bisection bandwidth,

for random, uniform traffic), and built with the same

networking technology. We will measure the time the

networks need to deliver all the traffic generated by the

workloads, and also the temporal evolution of the net-

work throughput.

The first network under study is a 64-port crossbar.

This is a particular network that is able to interconnect

nodes in an unblocking, any-to-any fashion, that is,

each node can send a message to any other node with

just two hops, one from the source NIC (network inter-

face card) to the crossbar and another one from the

crossbar to the destination NIC. We assume a perfect

crossbar, able to manage up to the number of ports (in

this case 64) messages at once, given that all those

messages come from different sources and do not

compete for the destination ports. In other words, when

bottlenecks appear, they are caused by contention at

injection or consumption ports, so this network will

show us the ideal execution time for the proposed traf-

fic patterns. This is the reason we use its performance

as the yardstick to compare against the other networks.

The second network is a 2-ary 6-tree built with 4-

port routers, two of the ports are upwards and another

two downwards. Note that this is not currently a com-

mon network topology, because today’s routers have a

noticeably higher radix. However, it is valid to show

how some of the proposed workloads are “fat-tree-

friendly”, that is, execution behavior and temporal evo-

lution of the network under these are close to that ob-

served with the 64-port crossbar.

The last network is an 8-ary 2-cube (8x8 torus) built

using 5-port routers, 1 port to communicate with the

local node, and the other four connected to neighbors

at directions X+, X-, Y+ and Y-. This topology is a

reduced version of those used in current MPPs such as

BlueGene [4] and RedStorm [5].

4.2. Model of the components

We model the node as a traffic generation source

with one injection queue, which is able to store up to 8

packets. It is also the sink to the arriving messages.

When generating traffic, we consider reactive sources,

meaning that the reception of a message may trigger

the release of a new one. This way we can model the

causality inherent to actual applications traffic.

We have chosen simple input-buffered switches

whose radixes are 4, 5 and 64, depending on the topol-

ogy of choice. Four virtual channels share each physi-

cal channel. The arbitration of each output port is per-

formed in a random way, that is, when several input

ports request the same output port, one of them is cho-

sen at random. Transit queues are located at the input

ports, and are able to store 4 packets each. There is a

schematic model of the switch in Fig. 7.

Messages are split into packets of a fixed size of 16

phits. One phit is the smallest transmission unit, fixed

to 32 bits. If a message does not fit exactly in an inte-

0

1

r-1

Crossbar

0

1

r-1

Fig. 7. Model of the switch (radix r). Four virtual

channels sharing port 0 are shown.

gral number of packets, the last packet contains unused

phits. The switching strategy is virtual cut-through.

Routing in fat-trees is, when possible, adaptive us-

ing minimal paths. A credit-based flow-control mecha-

nism is used, so that when several output ports are

valid to reach the destination, the port with most avail-

able credits is requested. Credits are communicated

out-of-band, so they do not interfere with regular traf-

fic. The torus network uses one escape channel with

DOR static routing and bubble flow control [12] to

avoid deadlock situations. The other three VCs are

fully adaptive using minimal paths. Obviously the

crossbar routing algorithm is static because there is

only a way to go from a source to a destination.

4.3. Workloads

To simplify figures and discussion, we will use in

the experiments a selection of the workloads described

before. Those will be BT, BU, 2M, 3M, 2W and 3W.

These include a mixture of heavy (BU, 2M, 3M) and

light (BT, 2W, 3W) traffic patterns, and also patterns

with different spatial characteristics: binary (BT, BU),

2D square-like (2M, 2W) and 3D cube-like (3M, 3W).

In order to keep things simple, inter-stage computa-

tion times will be ignored and message length will be

constant along each execution. Experiments will be

repeated with three different message lengths (640,

3200 and 64000 bytes) to simulate different problem

sizes. Note that in this evaluation there is an identity

bijection between pattern tasks and system nodes, in

other words, tasks are placed consecutively (task i runs

at node i) and there is only one task into each node.

4.4. Experiments and analysis of results

Results of the experiments for the longest messages

are presented in Fig. 8 and 9. Results for the other

message lengths are similar, and will not be shown for

the sake of simplicity. As each workload requires a

different running time, plotted times are normalized to

the best case (crossbar labeled), so that plots are easier

to understand. In Fig. 8, the fat-tree topology exhibits a

performance close to the optimal obtained by the

crossbar in all cases, but 2M. In contrast, the torus to-

pology runs into problems when managing heavy traf-

fic patterns that do not match the network topology

(BU and 3M).

Comparation of fattree and torus using

causal synthetic traffic patterns

0

0.5

1

1.5

2

BT BU 2M 3M 2W 3W

Traffic Pattern

N
o
rm
a
liz
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

64-crossbar

2-ary 6-tree

8x8 torus

Fig. 8 Times to deliver all the messages for each
topology and traffic pattern (normalized to crossbar)

a) Temporal Evolution Using Binary Tree Pattern

0

0.2

0.4

0.6

0 400 800 1200 1600

Clock Cycle (thousands)

A
v
e
ra
g
e
 L
o
a
d 64-port crossbar

2-ary 6-tree

8x8 torus

b) Temporal Evolution Using Wave-Front 3D Pattern

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000

Clock Cycle (thousands)

A
v
e
ra
g
e
 L
o
a
d

64-port crossbar

2-ary 6-tree

8x8 torus

c) Temporal Evolution Using Butterfly Pattern

0

0.25

0.5

0.75

1

0 500 1000 1500 2000 2500

Clock Cycle (thousands)

A
v
e
ra
g
e
 L
o
a
d

64-port crossbar

2-ary 6-tree

8x8 torus

d) Temporal Evolution Using Distribution 2D Pattern

0

0.25

0.5

0.75

1

0 500 1000 1500 2000

Clock Cycle (thousands)

A
v
e
ra
g
e
 L
o
a
d 64-port crossbar

2-ary 6-tree

8x8 torus

Fig. 9. Temporal evolution of the average consumed load measured in phit/cycle/node for different traffic

patterns: a) BT pattern. b) 3W pattern. c) BU pattern. d) 2M pattern.

The temporal evolution of the consumed load (phit/

cycle/node) for some of the workloads is plotted in Fig.

9. The broad blue line (crossbar) shows the communi-

cation needs of the different workloads, and the way

they evolve with time. When those needs are light and

the paths of messages do not overlap (this depends on

the underlying topology) the networks are capable to

deliver the workload without significant latency; Fig.

9a and Fig. 9b show two of these cases. In contrast, if

communication needs are more intense and paths over-

lap, networks have some trouble arbitrating resources,

with the resulting increase in latency, as can be seen in

Fig. 9c and Fig. 9d. In the former, the spatial pattern of

BU adapts better to the characteristics of the fat-tree

topology; however, when the network is a torus, most

of the messages overlap, reaching only one half of the

peak performance. The latter (2D) shows how the

mapping of a 2D mesh on a 2D torus is optimal, but

when allocating the mesh over a fat-tree the network is

not able to deliver the workload at maximum speed,

thus communication time increases in a 25%.

Reader should note that Fig. 9b – corresponding to

3W, one of the most complex patterns – reveals how

the imposed load varies with time, and how the evalu-

ated networks deal with it. The three networks deliver

the workload in similar time, but their temporal evolu-

tions are completely different.

5. Conclusions and future work

In this paper we have discussed methodologies to

evaluate high-performance parallel systems, focusing

on the workloads used in these evaluations. Workloads

can be purely synthetic or based on actual applications.

Also, they can use causal or independent traffic

sources. We have described the pros and cons of gen-

erating and using these workloads. Furthermore, we

propose new workloads that, although synthetically

generated, emulate pieces of actual applications.

We have characterized and justified several applica-

tion-like pseudo-synthetic workloads that mimic appli-

cations behavior with high levels of fidelity. They are

organized in two main groups. The first group includes

emulations of message interchanges aimed to imple-

ment collective operations in an efficient way. The

second group includes emulations of the way scientific

applications that make use of huge matrices communi-

cate, taking advantage of virtual topologies.

As an example of how these synthetic workloads

can be used in performance-related studies, we have

done a comparison of three different network topolo-

gies: a crossbar, a fat-tree and a torus. This way we

have shown that there are some pieces of the applica-

tions that are topology-friendly. Furthermore we have

shown the temporal evolution of the networks under

these workloads in order to show how the communica-

tion requirements of the applications change with time.

As future work we intend to increase the library of

communication micro-kernels, in order to be able to

emulate more applications. We plan to focus our atten-

tion on the “13 dwarves” [2], a collection of classes of

applications representative of those actually running on

high-performance computing sites. This enhanced li-

brary will be used for different performance-related

studies carried out in our research groups, including

comparisons of topologies, fault-tolerance strategies,

routing mechanisms, etc.

References

[1] Y. Aoyama, J. Nakano. "RS/6000 SP: Practical MPI Pro-

gramming". IBM Red Books SG24-5380-00, 1999.

[2] K. Asanovic et al. ''The Landscape of Parallel Computing

Research: A View from Berkeley''. EECS Department. Uni-

versity of California, Berkeley. TR UCB/EECS-2006-183.

[3] E. Barszcz et al., ''Solution of Regular, Sparse Triangular

Linear Systems on Vector and Distributed-Memory Multi-

processors'', NAS RNR-93-007, NASA Ames Research Cen-

ter, April 1993.

[5] M. Blumrich, et al. ''Design and Analysis of the

BlueGene/L Torus Interconnection Network'' IBM Research

Report RC23025 Dec. 2003.

[6] W.J. Camp, J.L. Tomkins: ''Thor’s hammer: The first

version of the Red Storm MPP architecture. '' In Proc. of the

SC 2002 Conference, Baltimore, MD (2002)

[7] WJ Dally, B Towles. ''Principles and Practices of Inter-

connection Networks''. Chapter 24, Morgan-Kaufmann,2004.

[8] J.J. Dongarra, H.W. Meuer, E. Strohmaier. ''Top500 Su-

percomputer sites''. Available at: http://www.top500.org/

[9] S. Labour, ''MPICH-G2 Collective Operations, Perform-

ance Evaluation, optimizations'', available at http://www-

unix.mcs.anl.gov/~lacour/argonne2001/report.ps

[10] J Navaridas, FJ Ridruejo, J Miguel-Alonso. ''Evaluation

of Interconnection Networks Using Full-System Simulators:

Lessons Learned". Proc. 40th Annual Simulation Sympo-

sium, Norfolk, VA, March 26-28, 2007.

[11] NASA Advanced Supercomputing (NAS) division.

''NAS Parallel Benchmarks''.

[13] F Petrini et al. ''Performance Evaluation of the Quadrics

Interconnection Network''. In the Journal of Cluster Comput-

ing, 6(2):125-142, April 2003.

[14] V Puente, et al, ''The Adaptive Bubble router'', Journal

on Parallel and Distributed Computing, vol 61, Sept. 2001.

[15] F.J. Ridruejo et al. ''TrGen: a Traffic Generation System

for Interconnection Network Simulators'' (PEN-PCGCS'05).

ICPP 2005 Workshops. 14-17 June

[16] F.J. Ridruejo, J. Miguel-Alonso. ''INSEE: an Intercon-

nection Network Simulation and Evaluation Environment''.

Lecture Notes in Computer Science, Volume 3648 / 2005.

[17] F. J. Ridruejo, et al, ''Realistic Evaluation of Intercon-

nection Network Performance'', PDCAT 2007, December 3-6

[18] R. Thakur and W. Gropp, “Improving the Performance

of Collective Operations in MPICH”, available at

http://www-unix.mcs.anl.gov/~thakur/papers/mpi-coll.pd

