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Abstract
 
 

Evaluation of high performance parallel systems is 

a delicate issue, due to the difficulty of generating 

workloads that represent, with fidelity, those that will 

run on actual systems. In this paper we make an over-

view of the most usual methodologies used to generate 

workloads for performance evaluation purposes, focus-

ing on the network: random traffic, patterns based on 

permutations, traces, execution-driven, etc. In order to 

fill the gap between purely synthetic and application-

driven workloads, we present a set of pseudo-synthetic 

workloads that mimic applications behavior, emulating 

some widely-used implementations of MPI collectives 

and some communication patterns commonly used in 

scientific applications. This mimicry is done in terms of 

spatial distribution of messages as well as in the 

causal relationship among them. As an example of the 

proposed methodology, we use a subset of these work-

loads to confront tori and fat-trees  

1. Introduction 

The interconnection network is the most character-

istic element of any parallel computer. Its performance 

has a definite impact on the overall execution time of 

applications, especially for those that are fine-grained 

and communication intensive. Thus, we should not 

decide lightly the network that interconnects comput-

ing elements in a high performance computing site.  

The evaluation of an interconnection network is a 

complex task that requires a complete model of the 

network technology we want to assess. Once we have 

the model of the system, we ought to measure its per-

formance, and some important questions arise: How 

should we evaluate the network? Should we measure 

only raw performance? Is it a better idea to fine-tune 
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the system for the set of applications that will run on 

it? 

There is not just a valid answer to these questions. 

Often, the most important measurement of a system’s 

performance consists simply in running Linpack, 

whose measured performance is the sorting-key for the 

top500 list [7]. Supercomputing sites can climb some 

positions in the list, improving their prominence, by 

boosting this single figure. In other places the evalua-

tion is centered on the execution speed achievable by 

those applications that are currently used, or those that 

are expected to be used in the future. Alternatively, for 

the networking technology engineer, the most impor-

tant evaluation concern should be the raw performance 

of the product, which means that its design will per-

form acceptably well in almost all scenarios. 

In this paper we discuss some methodologies used 

to evaluate interconnection networks, and propose a set 

of synthetic traffic patterns that emulate pieces of sci-

entific applications, both in terms of the spatial distri-

bution of messages and causal relationship between 

them; the evolution of message lengths is discussed 

too. These workloads can be considered as perform-

ance measurement micro-kernels, because they evalu-

ate the behavior of the system under different kinds of 

traffic that often appear within parallel applications. 

However, the effort of evaluating with these micro-

kernels will be orders of magnitude smaller than that 

required to run a large set of complete applications. 

The rest of this paper is arranged as follows. In Sec-

tion 2 an overview of the most common methodologies 

used to evaluate parallel computing systems are dis-

cussed, showing the motivations to introduce applica-

tion-inspired workloads. Section 3 introduces and justi-

fies some workloads of this class, and the way they 

resemble common patterns used within applications. In 

Section 4 we show how these workloads can be used in 

an actual performance measurement study, using as an 

example the comparison of torus and fat-tree networks. 

Finally we close this paper with some conclusions and 

future lines of work in Section 5. 



2. Related work 

Synthetic traffic patterns from independent sources 

[6] provide a good first approach to evaluate a network 

because they allow us to asses rapidly what the raw 

performance of a network is. Often, randomly gener-

ated traffic is used to evaluate systems: uniform, hot 

region and hot spot traffic patterns have been used in 

many studies [4][12]. Other commonly used patterns 

are those that send packets from each source node to a 

destination one as indicated by a certain permutation, 

usually defined as a function that takes as input the 

address of the source. Some examples of these permu-

tations are: matrix transpose, bit complement, butterfly, 

perfect shuffle, bit reversal, etc. [11].  

It is not common to find actual applications that are 

internally implemented using patterns like these, syn-

thetic ones, in which traffic-generating nodes produce 

messages without coordinating among them. We can 

state that synthetic traffic patterns do not accurately 

mimic the behavior of any actual application [15]. For 

this reason, trace-driven simulation is often used to 

perform a more realistic evaluation of a system [6]. 

Feeding a simulator with a trace is not an easy task. To 

evaluate only the network of a parallel system we 

could implement a dummy model of the processing 

node, allowing it to inject messages into the network as 

fast as it can, ignoring the causality of messages and 

the computation intervals. This approach is a stress test 

of the network, because of the contention generated by 

all nodes injecting at the maximum pace. 

It would be more realistic to maintain the causal re-

lationship between all the messages in the trace [13]; in 

other words, if the trace states that there is a reception 

before a send, the node has to wait for the reception to 

be completed before starting with the send. This 

mechanism provides more fidelity than the inject-at-

will model. To further improve the accuracy of the 

simulation, compute intervals (in which nodes do not 

inject load into the network) should be taken into ac-

count, maybe applying a CPU-scaling-factor in order 

to simulate a system with faster (or slower) CPUs than 

those used to capture the trace. 

There are still some problems with the trace-driven 

approach that we should not ignore. Firstly, the infor-

mation captured within the trace could be inexact due 

to the trace logging mechanism. Secondly, traces may 

reflect some of the characteristics of the system in 

which they have been obtained. Finally, traces from 

actual applications running in a large set of processors 

are difficult to obtain, store and manage traces, and 

these are precisely the ones of interest in performance 

evaluation studies. 

A hybrid between the utilization of synthetic traffic 

patterns and traces is the estimation of probability dis-

tributions for destinations, inter-generation times and 

message lengths, using data extracted from actual 

traces to feed some distribution-fitting program. With 

the aid of these tools we can generate random traffic 

whose distribution resembles that of the traced applica-

tion (when running in a particular system). However, 

as stated before, in actual applications causal relation-

ships among messages are common, and this technique 

does not capture them. And, again, the inexactitude of 

the information within the trace (due to the characteris-

tics of the system in which the trace was captured, and 

the intrusion of the logging process) may generate es-

timated distributions, or parameters of those, that are 

not valid.  

In order to introduce causality in the simulation and 

fill the gap between trace-driven simulation and syn-

thetic traffic patterns, a bursty traffic model was evalu-

ated in [15]. This model uses synthetic traffic patterns 

and emulates application causality using a coarse-

grained approach. The message generation process 

passes through a certain number of “bursts” or steps. 

During a burst each node is able to inject into the net-

work only a given number of packets (b); after doing 

so, it must stall until the burst finishes, that is, until all 

the packets of the burst (generated at all the nodes) 

have been injected and received, being the network 

completely empty. Simulations with short bursts emu-

late tightly-coupled applications and, therefore, long 

bursts emulate loosely-coupled applications. Synchro-

nization among application tasks is included in this 

model, but in a very primitive way (roughly a barrier 

every b packets); fine-grained dependencies among 

messages/tasks are not considered. 

The most accurate methodology to evaluate a paral-

lel computer would be running a detailed full-system 

simulation that includes interconnection network, 

compute nodes, their operative system, and the applica-

tions running on them. This is a very complex and er-

ror-prone task, as discussed in [9]. It is also a high re-

source-consuming methodology that could need a sys-

tem similar in dimension to the one we want to evalu-

ate. These are the main reasons to justify the limited 

utilization of execution-driven simulation to evaluate 

medium-to-large size distributed memory parallel com-

puters.  

Within this paper we will introduce a set of pseudo-

synthetic workloads inspired in application-kernels 

aimed to fulfill the gap between purely-synthetic and 

application-driven workloads. These novel workloads 

emulate the spatial and temporal patterns of parallel 

applications. We arrange them into two sets: one that 

mimics the implementation of collective operations in 

MPI libraries, and another one that mimics the behav-

ior of applications that rely in the use of virtual topolo-

gies, mostly virtual meshes and tori. 



3. Proposed workloads 

In this section we describe in detail and discuss our 

proposal to model application-like workloads. They 

will be described graphically as well as algorithmi-

cally. All the proposed workloads require the specifica-

tion of a few parameters: the number of communica-

tion tasks (N), the length of the basic message (S) and, 

in the case of the workloads that rely on virtual topolo-

gies, the number of dimensions (D). We assume that 

tasks are identified from 0 to N-1. We define a basic 

message as the length of the data blocks generated at 

the nodes; the length of the messages that actually 

traverse the network may vary, if the workload requires 

the aggregation of messages; this issue will be dis-

cussed later. When the pattern is arranged as a se-

quence of stages (meaning that all nodes have to wait 

for messages before starting with new sends), we will 

denote the stage number as t.  

The reader should note that, when we talk about dis-

tances in this section, we refer to the difference be-

tween source and destination node identifiers. The ac-

tual, physical distance of those nodes will depend on 

the routing and topological characteristics of the under-

lying network. 

Send_to(node, length) and Wait_from(node, length) 

functions, in the algorithmic definitions of the patterns, 

do what their names suggest: send a message to a des-

tination or wait until a message from the desired node 

arrives. For both operations, if the other communicat-

ing part (the receiver or the sender) is not defined, the 

call will do nothing, just return. In the virtual topolo-

gies subsection (3.2), the Neighbor(node, dimension, 

direction) function used in the algorithmic definition of 

those patterns will return the neighbor of a given node 

for the given dimension and direction; in the case of a 

(virtual) mesh topology, the returned value could be 

undefined for the nodes located at the borders of the 

network. Length(stage, length) returns the message 

length taking into account the length evolutions we 

will discuss latter. 

Regarding graphical description of the patterns, 

small black arrows represent messages: the rounded 

end represents a message sending, and the arrowhead 

represents the waiting for the message at the destina-

tion task, so if there is an arrowhead before a round, 

the node has to wait until the first message arrives; 

only then the second message can be injected. Green 

arrows in section 3.1 represent MPI tasks and are ar-

ranged top-down, i.e. the green arrow at the top of the 

figure represents task 0, the one at the bottom repre-

sents task 7 (N-1). The green squares in section 3.2 

represents MPI tasks and are arranged from left to right 

and then top-down, so the tasks in the topmost row are 

task 0, task 1, … 

3.1. MPI collective operations 

Most of the scientific parallel applications we have 

studied use MPI collectives to implement parts of their 

functionality: from scattering information to collecting 

results, or just to synchronize a group of processes. For 

example, the Fourier Transform, used in many scien-

tific applications, could be implemented by means of 

MPI_Alltoall() and MPI_Reduce() collectives: the FT 

program included in the NAS Parallel Benchmarks 

[10] is implemented this way. Thus, we found of inter-

est to assess the performance of the network when real-

izing collective operations, because of the bearing it 

will have in the overall performance of complete appli-

cations. In this subsection we propose traffic patterns 

that are the foundation used to implement some of the 

most common collectives. 

3.1.1. Binary tree 

The Binary Tree pattern (BT) provides an efficient 

implementation of some N-to-1 (all-to-one) collective 

operations, used by some MPI implementations that 

make no assumption about the underlying network or 

the node placement strategy [8]. In this pattern mes-

sage interchanges are performed in O(N) in number of 

messages and O(log N) in time. It starts with a message 

at odd-numbered nodes, and ends when a “root” node 

(in our model, node 0) has received the last message 

from all nodes whose identifier is a power of two (in-

cluded 2
0
=1). The spatial and causal pattern is defined 

algorithmically and graphically in Fig. 1. 

The MPI_Reduce() collective is implemented using 

this pattern, with a constant message length (that of the 

type of the reduced variable, commonly a float or an 

integer). Note that a computation phase is introduced 

before each send, in order to perform the reduction 

operation; however, as the CPU time used to perform 

this operation is usually very small (the time to per-

form a simple operation such as an addition or a com-

parison) we could ignore it. MPI_Gather() also makes 

use of this pattern. The length of the message dupli-

cates at each stage (increases exponentially). In con-

trast, in MPI_Gatherv() the message length increases 

each stage in an application-defined way. 

3.1.2. Inverse binary tree  
A variant of the previous pattern, the Inverse Binary 

Tree (IBT) is a common implementation of 1-to-N 

(one-to-all) collectives [8], with the same complexity 

of the BT pattern. IBT starts with a single message in 

the “root” node and finishes when all the odd nodes 

receive a message. Readers may note that spatial and 

causal patterns are just the opposite of those of BT. 

IBT is defined algorithmically and graphically in Fig. 

2. 



MPI_Bcast() uses this pattern in some MPI imple-

mentations that rely on point to point operations to 

offer this functionality (often because there is not net-

work-supported broadcast). The message length is 

fixed during the whole pattern, and the computation 

time is zero because there is no operation to perform 

with the received message; the node only has to send it 

to the next task, if necessary. MPI_Scatter() operation 

also uses IBT and the message length halves at each 

stage. In the case of MPI_Scatterv() the message length 

in an application-dependent way. Regarding the com-

putation time, it depends on the architecture and the 

possibility to use DMA directly from the MPI library. 

The reader should note that a usual mechanism to 

implement MPI_Barrier() is by concatenating a Binary 

Tree and an Inverse Binary Tree with message length 

0. This way, when the BT finishes, the “root” knows 

that all tasks are synchronized, and starts an IBT to let 

the other tasks know that all of them have reached the 

barrier, i.e. they are synchronized. 

3.1.3. Butterfly 

The Butterfly pattern (BU) provides an efficient 

implementation of MPI N-to-N (all-to-all) collectives 

(MPI_Alltoall(), MPI_Allreduce(), etc.) [16]. It is also 

known as “recursive doubling”, or “recursive halving” 

in the inverse butterfly case. BU is O(N log N) in num-

ber of messages and O(log N) in time. BU pattern 

starts with a message at each node, and ends when all 

the messages are received. Algorithmic and graphical 

definitions of this pattern are shown in Fig. 3. 

Usual implementations of MPI_Alltoall() perform a 

Butterfly with constant-length messages. Time be-

tween stages is just the time to go through node’s pro-

tocol stack (two times: up and down). MPI_Allreduce() 

is commonly performed using this pattern, with fixed-

length messages, using some CPU time between pat-

tern stages to perform the operation associated to the 

reduction. In MPI_Allgather() the message length dou-

bles at each stage of the Butterfly. It happens similarly 

with MPI_Allgatherv(), in which the message length 

increases at each stage but in an ad-hoc fashion. Fi-

nally MPI_Allscatter() performs a Butterfly in which 

message length halves at each stage. Regarding 

MPI_Allscatterv(), the message length decreases each 

stage in an application-defined way. Again, the CPU 

interval depends on the system and the MPI library. 

3.2. Virtual topologies 

This branch of communication patterns reproduce 

the data interchanges performed in applications that 

rely on virtual topologies, such as the 2D meshes com-

monly used in matrix calculus. We have modeled these 

patterns in such a way that they are available for sev-

eral dimensions (D). We do not discuss about the mes-

sage length in these patterns, because it is constant (a 

chunk of the problem matrix). Also, the CPU intervals 

among stages within these patterns depend on the ap-

plication and their matrix size. Note that a virtual to-

pology is independent of the actual network topology, 

because it is just a way to arrange MPI processes. 
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Fig. 1. Algorithmic and graphical 
definitions of Binary Tree pattern. 

Fig. 2. Algorithmic and graphical 
definitions of Inverse Binary Tree pattern. 

Fig. 3. Algorithmic and graphical 
definitions of Butterfly pattern. 

 



3.2.1. Wave-front 
The 2D and 3D Wave-front patterns (2W and 3W) 

perform a diagonal sweep from the first node to the last 

one in MPI virtual square (or cubic) meshes. The simu-

lation of these patterns starts with two (three for 3W) 

messages in node 0, and ends with the finalization of 

the sweep at the last node of the network. These pat-

terns do not impose a very heavy load on the network – 

note that there are only a few nodes injecting at once – 

but create some contention near the destination nodes, 

because they have to receive data from several 

neighbors. Regarding message distance, in 2W it can 

take just two values: 1 and N  . In the case of 3W, it 

can take three values: 1, 3 N  and 3 2N . Spatial and 

causal patterns of Wave-front are defined algorithmi-

cally and graphically in Fig. 4. 

We can observe this pattern in applications imple-

menting the Symmetric Successive Over-Relaxation 

(SSOR) [3] algorithm, used to solve sparse, triangular 

linear systems. For example, application LU from the 

NPB suite [10] performs several consecutive bi-

dimensional sweeps composed by short messages. We 

denominate the concatenation of 2W Waterfall (WF). 

3.2.2. Distribution 
The 2D and 3D mesh patterns (2M, 3M) perform 

data distributions in MPI virtual square (or cubic) 

meshes from every node to all its neighbors; after that, 

each node waits for the reception of all messages from 

its neighbors. Simulation starts with all nodes injecting 

one message per direction (2-4 for 2M, 3-6 for 3M), 

and ends when all the messages have arrived to their 

destinations. These patterns impose a very heavy load 

on the network, because all nodes inject simultane-

ously several messages at once before stopping to wait 

for the receptions. Regarding message distance, in 2M 

it can take just two values: 1 and N . In the case of 

3M, it can take values: 1, 3 N  and 3 2N  . Algorithmic 

and graphical definitions are shown in Fig. 5. 

These patterns can be observed in scientific applica-

tions using finite difference methods [1]. In some of 

these applications, the spatial pattern also includes 

communication in the positive diagonal: each node 

communicates with the nodes located at ±1 in all di-

mensions. Furthermore, there are some patterns similar 

to these, but using virtual tori instead of virtual 

meshes, thus the nodes located in the boundaries of the 

virtual topology communicate between them. 

3.2.3. Direction Distribution 

The 2D and 3D distribution patterns (2D, 3D) per-

form the same data distributions of 2M and 3M in vir-

tual square (or cubic) meshes. However in these pat-

terns data distributions are arranged in several steps, 

one for each direction. Simulation starts with all nodes 

injecting one message to their neighbors in the positive 

first dimension (X+). After that, each node wait for the 

message from its neighbor, and then sends it to the 

neighbor in the negative first dimension (X-), and so 

on for all the remaining directions. Simulation will end 

when all messages in the last direction (and obviously 

in all the other directions) have been delivered. 
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Wavefront  in a 2D Mesh 3x3
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Distribution in a 2D Mesh 4x4
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2D Direction Distribution in a 3x3 Torus
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Fig. 4. Algorithmic and graphical 
definitions of 2D Wave-Front pattern. 

Fig. 5. Algorithmic and graphical 
definitions of 2D Distribution pattern. 

Fig. 6. Algorithmic and graphical 
definitions of 2D Dir. Dist. pattern. 

 



These patterns impose a not-so-heavy load on the 

network, because all nodes inject simultaneously one 

message at once before stopping to wait for the recep-

tions. Message distance distributions are the same of 

2M and 3M patterns. The spatial and causal pattern is 

defined algorithmically and graphically in Fig. 6. 

These patterns are also common in finite difference 

methods [1]. Some applications use some traffic pat-

terns in which the distribution is arranged by dimen-

sions, this is, first messages are interchanged in the 

first dimension (X+ and X-) and, when those inter-

changes have finished, the interchanges in the next 

dimension (Y+ and Y-) can start, and so on. Note that 

the same possible variants of the distribution pattern 

(diagonal and tori) could be applied to these patterns. 

Just as a curiosity, the reader should note that for-

merly explained butterfly pattern could be seen as a 

dimension distribution in a (virtual) hypercube. 

4. Evaluating network topologies using ap-

plication-like workloads 

As an example of the proposed methodology and 

also to show the temporal evolution of the load im-

posed in the networks by these workloads, we will per-

form a comparison of cube-like and tree-like topolo-

gies. In order to have a comparison yardstick, we will 

also study a perfect crossbar that would represent a 

best-case in network communications. Experiments 

will be carried out using simulation [14], measuring 

time in terms of (simulated) cycles: a cycle is the time 

required by a phit (a physical transfer unit, typically a 

few bytes) to traverse one switch. 

4.1. Networks to compare 

We will evaluate three small networks, all of them 

with a theoretical maximum throughput of 1 

phit/cycle/node (limited by the bisection bandwidth, 

for random, uniform traffic), and built with the same 

networking technology. We will measure the time the 

networks need to deliver all the traffic generated by the 

workloads, and also the temporal evolution of the net-

work throughput. 

The first network under study is a 64-port crossbar. 

This is a particular network that is able to interconnect 

nodes in an unblocking, any-to-any fashion, that is, 

each node can send a message to any other node with 

just two hops, one from the source NIC (network inter-

face card) to the crossbar and another one from the 

crossbar to the destination NIC. We assume a perfect 

crossbar, able to manage up to the number of ports (in 

this case 64) messages at once, given that all those 

messages come from different sources and do not 

compete for the destination ports. In other words, when 

bottlenecks appear, they are caused by contention at 

injection or consumption ports, so this network will 

show us the ideal execution time for the proposed traf-

fic patterns. This is the reason we use its performance 

as the yardstick to compare against the other networks. 

The second network is a 2-ary 6-tree built with 4-

port routers, two of the ports are upwards and another 

two downwards. Note that this is not currently a com-

mon network topology, because today’s routers have a 

noticeably higher radix. However, it is valid to show 

how some of the proposed workloads are “fat-tree-

friendly”, that is, execution behavior and temporal evo-

lution of the network under these are close to that ob-

served with the 64-port crossbar. 

The last network is an 8-ary 2-cube (8x8 torus) built 

using 5-port routers, 1 port to communicate with the 

local node, and the other four connected to neighbors 

at directions X+, X-, Y+ and Y-. This topology is a 

reduced version of those used in current MPPs such as 

BlueGene [4] and RedStorm [5]. 

4.2. Model of the components 

We model the node as a traffic generation source 

with one injection queue, which is able to store up to 8 

packets. It is also the sink to the arriving messages. 

When generating traffic, we consider reactive sources, 

meaning that the reception of a message may trigger 

the release of a new one. This way we can model the 

causality inherent to actual applications traffic.  

We have chosen simple input-buffered switches 

whose radixes are 4, 5 and 64, depending on the topol-

ogy of choice. Four virtual channels share each physi-

cal channel. The arbitration of each output port is per-

formed in a random way, that is, when several input 

ports request the same output port, one of them is cho-

sen at random. Transit queues are located at the input 

ports, and are able to store 4 packets each. There is a 

schematic model of the switch in Fig. 7. 

Messages are split into packets of a fixed size of 16 

phits. One phit is the smallest transmission unit, fixed 

to 32 bits. If a message does not fit exactly in an inte-
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Fig. 7. Model of the switch (radix r). Four virtual 

channels sharing port 0 are shown.  



gral number of packets, the last packet contains unused 

phits. The switching strategy is virtual cut-through. 

Routing in fat-trees is, when possible, adaptive us-

ing minimal paths. A credit-based flow-control mecha-

nism is used, so that when several output ports are 

valid to reach the destination, the port with most avail-

able credits is requested. Credits are communicated 

out-of-band, so they do not interfere with regular traf-

fic. The torus network uses one escape channel with 

DOR static routing and bubble flow control [12] to 

avoid deadlock situations. The other three VCs are 

fully adaptive using minimal paths. Obviously the 

crossbar routing algorithm is static because there is 

only a way to go from a source to a destination. 

4.3. Workloads 

To simplify figures and discussion, we will use in 

the experiments a selection of the workloads described 

before. Those will be BT, BU, 2M, 3M, 2W and 3W. 

These include a mixture of heavy (BU, 2M, 3M) and 

light (BT, 2W, 3W) traffic patterns, and also patterns 

with different spatial characteristics: binary (BT, BU), 

2D square-like (2M, 2W) and 3D cube-like (3M, 3W).  

In order to keep things simple, inter-stage computa-

tion times will be ignored and message length will be 

constant along each execution. Experiments will be 

repeated with three different message lengths (640, 

3200 and 64000 bytes) to simulate different problem 

sizes. Note that in this evaluation there is an identity 

bijection between pattern tasks and system nodes, in 

other words, tasks are placed consecutively (task i runs 

at node i) and there is only one task into each node. 

4.4. Experiments and analysis of results 

Results of the experiments for the longest messages 

are presented in Fig. 8 and 9. Results for the other 

message lengths are similar, and will not be shown for 

the sake of simplicity. As each workload requires a 

different running time, plotted times are normalized to 

the best case (crossbar labeled), so that plots are easier 

to understand. In Fig. 8, the fat-tree topology exhibits a 

performance close to the optimal obtained by the 

crossbar in all cases, but 2M. In contrast, the torus to-

pology runs into problems when managing heavy traf-

fic patterns that do not match the network topology 

(BU and 3M). 

Comparation of fattree and torus using

causal synthetic traffic patterns
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Fig. 8 Times to deliver all the messages for each 
topology and traffic pattern (normalized to crossbar) 

a) Temporal Evolution Using Binary Tree Pattern
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b) Temporal Evolution Using Wave-Front 3D Pattern
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c) Temporal Evolution Using Butterfly Pattern
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d) Temporal Evolution Using Distribution 2D Pattern
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Fig. 9. Temporal evolution of the average consumed load measured in phit/cycle/node for different traffic 

patterns: a) BT pattern. b) 3W pattern. c) BU pattern. d) 2M pattern. 



The temporal evolution of the consumed load (phit/ 

cycle/node) for some of the workloads is plotted in Fig. 

9. The broad blue line (crossbar) shows the communi-

cation needs of the different workloads, and the way 

they evolve with time. When those needs are light and 

the paths of messages do not overlap (this depends on 

the underlying topology) the networks are capable to 

deliver the workload without significant latency; Fig. 

9a and Fig. 9b show two of these cases. In contrast, if 

communication needs are more intense and paths over-

lap, networks have some trouble arbitrating resources, 

with the resulting increase in latency, as can be seen in 

Fig. 9c and Fig. 9d. In the former, the spatial pattern of 

BU adapts better to the characteristics of the fat-tree 

topology; however, when the network is a torus, most 

of the messages overlap, reaching only one half of the 

peak performance. The latter (2D) shows how the 

mapping of a 2D mesh on a 2D torus is optimal, but 

when allocating the mesh over a fat-tree the network is 

not able to deliver the workload at maximum speed, 

thus communication time increases in a 25%. 

Reader should note that Fig. 9b – corresponding to 

3W, one of the most complex patterns – reveals how 

the imposed load varies with time, and how the evalu-

ated networks deal with it. The three networks deliver 

the workload in similar time, but their temporal evolu-

tions are completely different. 

5. Conclusions and future work 

In this paper we have discussed methodologies to 

evaluate high-performance parallel systems, focusing 

on the workloads used in these evaluations. Workloads 

can be purely synthetic or based on actual applications. 

Also, they can use causal or independent traffic 

sources. We have described the pros and cons of gen-

erating and using these workloads. Furthermore, we 

propose new workloads that, although synthetically 

generated, emulate pieces of actual applications.  

We have characterized and justified several applica-

tion-like pseudo-synthetic workloads that mimic appli-

cations behavior with high levels of fidelity. They are 

organized in two main groups. The first group includes 

emulations of message interchanges aimed to imple-

ment collective operations in an efficient way. The 

second group includes emulations of the way scientific 

applications that make use of huge matrices communi-

cate, taking advantage of virtual topologies. 

As an example of how these synthetic workloads 

can be used in performance-related studies, we have 

done a comparison of three different network topolo-

gies: a crossbar, a fat-tree and a torus. This way we 

have shown that there are some pieces of the applica-

tions that are topology-friendly. Furthermore we have 

shown the temporal evolution of the networks under 

these workloads in order to show how the communica-

tion requirements of the applications change with time. 

As future work we intend to increase the library of 

communication micro-kernels, in order to be able to 

emulate more applications. We plan to focus our atten-

tion on the “13 dwarves” [2], a collection of classes of 

applications representative of those actually running on 

high-performance computing sites. This enhanced li-

brary will be used for different performance-related 

studies carried out in our research groups, including 

comparisons of topologies, fault-tolerance strategies, 

routing mechanisms, etc.  
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